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42 Abstract

43 Forests exhibit leaf and ecosystem level responses to environmental changes. Specifically, rising carbon 

44 dioxide (CO2) levels over the past century are expected to have increased the intrinsic water-use 

45 efficiency (iWUE) of tropical trees while the ecosystem is gradually pushed into progressive nutrient 

46 limitation. Due to the long-term character of these changes, however, observational datasets to validate 

47 both paradigms are limited in space and time. In this study, we used a unique herbarium record to go 

48 back nearly a century and show that despite the rise in CO2 concentrations, iWUE has decreased in 

49 central African tropical trees in the Congo basin. Although we find evidence that points to leaf-level 

50 adaptation to increasing CO2 – i.e. increasing photosynthesis-related nutrients and decreasing maximum 

51 stomatal conductance, a decrease in leaf δ13C clearly indicates a decreasing iWUE over time. 

52 Additionally, the stoichiometric carbon to nitrogen and nitrogen to phosphorus ratios in the leaves show 

53 no sign of progressive nutrient limitation as they have remained constant since 1938, which suggests 

54 that nutrients have not increasingly limited productivity in this biome. Altogether, the data suggest that 

55 other environmental factors, such as increasing temperature, might have negatively affected net 

56 photosynthesis and consequently downregulated the iWUE. Results from this study reveal that the 

57 second largest tropical forest on Earth has responded differently to recent environmental changes than 

58 expected, highlighting the need for further on-ground monitoring in the Congo Basin. 

59

60 Keywords: Congo basin, CO2 fertilization, herbarium, photosynthesis, stomata, aggravated nutrient 

61 limitation, tropical forest, water use efficiency
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62 Introduction

63 The Earth system has been subjected to unprecedented changes over the past century, including 

64 increasing atmospheric carbon dioxide (CO2) levels, shifting rainfall regimes, and changes in global 

65 biogeochemical cycles (Steffen et al. 2015). Uncertainties in the future response of forest ecosystems to 

66 these environmental changes are perhaps most prominent in the tropics, where monitoring is 

67 underdeveloped compared to temperate regions (Schimel et al. 2015). Tropical forests comprise 55% of 

68 the current carbon (C) stock of the world’s forests and exhibit high gross (GPP) and net (NPP) primary 

69 productivity (Beer et al. 2010, Pan et al. 2011). As such, tropical forests play a pivotal role in the global C 

70 cycle. The effect of human-induced changes on this biome is thus a central question in global change 

71 research (Bonan 2008a, Gibson et al. 2011). Large-scale permanent monitoring plots and tree-ring 

72 research in tropical forests have shown varying trends in tree growth over the last decades, from 

73 increased (Phillips 1998, Baker et al. 2004, Lewis et al. 2009) to stable or decreased growth (Feeley et al. 

74 2007, Clark et al. 2010, Groenendijk et al. 2015, Van Der Sleen et al. 2015). One of the proposed drivers 

75 for a growth acceleration is the global increase in atmospheric CO2 concentration, i.e. CO2 fertilization, 

76 which supposedly increases the intrinsic water-use efficiency (iWUE) – i.e. the ratio of C gain to water 

77 loss- or photosynthetic rates of terrestrial plants (Ballantyne et al. 2012, Keenan et al. 2013, Lavergne et 

78 al. 2019). Indeed, increases of iWUE have been widely noted across the tropics (Hietz et al. 2005, Brienen 

79 et al. 2010, Nock et al. 2011, Van Der Sleen et al. 2015), but few studies have disentangled whether this 

80 iWUE adaptation is controlled by shifts in photosynthesis (A) or stomatal conductance (gs) (Bonal et al. 

81 2011). 

82

83 Consequently, the question arises whether nitrogen (N) and phosphorus (P) supply can meet the 

84 increased biomass accrual from CO2 fertilization of forests globally. Modeling efforts have initially 

85 predicted a dampening of the land C storage sensitivity to CO2 caused by N limitation (Bonan 2008b, 

86 Sokolov et al. 2008). More recent simulations predict a reduction of 25% of the projected NPP by 2100 if 

87 both N and P limitations are taken into account (Wieder et al. 2015). To date, the empirical evidence of 

88 this progressive nutrient limitation remains inconclusive. A limited number of studies showed that long-

89 term N effects are regionally distinct, including decreasing N availability in North American grasslands 

90 and forests (McLauchlan et al. 2010, 2017) and European forests (Jonard et al. 2015), but increasing N 

91 availability in Panama and Thailand (Hietz et al. 2011). Moreover, recent evidence suggests a general 

92 decrease in N supply relative to the N demand in natural ecosystems worldwide (Craine et al. 2018). At 

93 present, the long-term effects of changes in N availability within these biomes remain poorly 

94 understood. Additionally, despite the fact that P is considered the major limiting nutrient for tropical 

95 forest ecosystems, only a few studies have looked directly into progressive P limitation (Vitousek et al. 

96 2010). Theory predicts that an initial P limitation might be exacerbated under CO2 fertilization and/or 
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97 elevated reactive atmospheric N deposition because litter stoichiometry will become increasingly 

98 depleted in P, which results in lower net P mineralization rates and finally further P limitation to plant 

99 growth (Peñuelas et al. 2013, Fernandez-Martinez et al. 2014, Wieder et al. 2015, Fleischer et al. 2019). 

100 Evidence from primary succession and nutrient addition experiments shows that progressive P limitation 

101 results in a shift in leaf P content and the N:P ratio in the canopy (Izquierdo et al. 2013, Li et al. 2016), 

102 while progressive P limitation over time has only been observed in a few sites (Huang et al. 2016). 

103

104 Most knowledge that we have gained on ecosystem responses to environmental change comes from 

105 short-term experiments or modeling studies. While these studies increase our process-based 

106 understanding of separate global change drivers, long-term empirical data are required to verify many of 

107 the paradigms that have been put forth. Indeed, empirical datasets are constrained by experiment 

108 duration, funding timelines, and the historic absence of researchers in many tropical sites. However, 

109 historical herbarium records can overcome some of these experimental limitations and enable us to go 

110 back in time to validate the overall response of tree species (Meineke et al. 2018). The UNESCO 

111 Yangambi Man and Biosphere Reserve, in the heart of the Congo basin, holds a research center founded 

112 in the 1930s by the colonial Belgians and passed on to a Congolese research institute in 1962. The 

113 continuous presence of researchers since 1930 has led to one of the most extensive and oldest 

114 herbarium collections in central Africa. From that collection, we selected 23 tree species common to 

115 central African tropical forests that cover a range of ecological life-history traits. We used herbarium 

116 specimens from three different time periods to accomplish three goals: 1) quantify responses in iWUE 

117 from 1938 until present, 2) determine whether this response is caused by changes in gs or 

118 photosynthesis, or a combination of both, and 3) provide evidence of increasing nutrient limitation, i.e. 

119 to assess whether the relative N and P demand kept pace with the induced changes on an ecosystem 

120 level. These goals were accomplished through the measurement of foliar nutrient content, isotopic 

121 signatures, and stomatal traits. Furthermore, we used an additional extensive sample set, along with a 

122 modelling effort, to rule out potential sampling biases in the effects that we quantified on the herbarium 

123 specimens.

124

125 Methods

126 Historic sample set. We used herbarium specimens of 23 tropical tree species that are common to 

127 central Africa, belonging to 14 flowering plant families (Table S1) and originating from the same reserve 

128 in the Democratic Republic of Congo. Leaves were collected from the African herbarium collection of 

129 Meise Botanic Garden, Belgium. The herbarium specimens were all collected in the Yangambi Man and 

130 Biosphere Reserve (N 00°47’; E24°30’), situated on the Northern bank Congo River 100 km west of 

131 Kisangani. The region has an Af-type tropical rainforest climate, with an annual rainfall of 1750 mm, a 
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132 bimodal rainfall distribution exhibiting a longer and shorter dry season, and a stable temperature of 

133 24.5°C throughout the year. The site is dominated by ferralsols (Van Ranst et al. 2010). Material was 

134 sampled from specimens collected at three different time points: (1) 1935-1938 (hereafter 1938), (2) 

135 1951-1953 (hereafter 1953), (3) 2012-2013 (hereafter 2013). For most species, we sub-sampled three 

136 specimens per time period, resulting in nine specimens per species (Table S1). We specifically targeted 

137 samples from the same reserve for the entire sample set, to eliminate inter-site variability or local 

138 climate effects. Additionally, the three dates were specifically selected to maximize the time range: 

139 sample collection started in the Democratic Republic of Congo around 1935 and stopped momentarily 

140 after the independence in 1960. To our knowledge, the historic samples were taken from sunlit, 

141 flowering or fruiting branches from adult trees (pers. comm., Piet Stoffelen). The samples in 2013 were 

142 collected with tree climbers, which implies that this sample set comprises both sun and shade leaves, 

143 because of the practical difficulties of access in the upper canopy. In all cases, only fully expanded, adult 

144 leaves were sampled. 

145
146 Figure 1. The location of Yangambi (red star), where triplicate samples were taken from 23 different tree 

147 species around the years 1938, 1953 and in 2013. The samples were all analyzed to detect changes over 

148 time via proxy variables for photosynthesis (A), stomatal conductance (gs), intrinsic water-use efficiency 

149 (iWUE) and leaf stoichiometric carbon to nitrogen (C:N) and nitrogen to phosphorus (N:P) ratios. The 

150 coloration on the map shows the ecosystem type delineation, with tropical wet forest in dark green. The A
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151 blue star indicates the location of the Luki reserve, where some of the samples to quantify variability in 

152 stomatal traits were taken.

153

154 Stoichiometry and isotopic composition. For each herbarium specimen, one leaf was sampled in the 

155 least invasive way possible by punching a hole with a hole-puncher in the center of the leaf on the right 

156 side of the central vein (upper side of the leaf pointing upwards). Leaf C, N and δ13C of plant samples 

157 were analyzed using an elemental analyzer (Automated Nitrogen Carbon Analyser; ANCA-SL, SerCon, 

158 UK), interfaced with an Isotope Ratios Mass Spectrometer (IRMS; 20-22, SerCon, UK). To check if the bulk 

159 δ13C signal was consistent with the cellulose δ13C signal, we analyzed cellulose δ13C for a subset of the 

160 samples (n=27). For this, we used an α-cellulose extraction protocol, modified for speed and small 

161 sample extraction (Brendel et al. 2000, Evans and Schrag 2004). In short, we weighed ca. 2 mg of bulk 

162 leaf material into 1.5 mL screw-cap polyethylene tubes and added 240 µl 80% acetic acid and 24 µl 69% 

163 nitric acid. The tubes were capped and placed in a 120°C oil bath for 30 minutes. After cooling of the 

164 samples to room temperature, 800 µl 100% ethanol was added to the tubes, and the tubes were 

165 centrifuged for 5 minutes at 15500 g. Next, three sequential rinse steps were performed by adding 1) 

166 600 µl deionized water, 2) 300 µl 100% ethanol and 3) 500 µl acetone with the centrifugation step 

167 between each rinse to remove the supernatant. Finally, the tubes were dried in an oven for 30 minutes 

168 at 50°C. The δ13C signal of the extracted cellulose was analyzed as described for the bulk leaf material 

169 above. We sampled the same leaves a second time with a hole puncher and analyzed the bulk material 

170 for the for the leaf δ18O values using a high temperature Thermal Conversion Elemental Analyzer (TC-EA), 

171 interfaced with an IRMS (IRMS; 20-20, SerCon, UK). In addition to C and O isotope analysis, between 0.2 

172 and 0.5 g of leaf sample was dry-ashed at 550°C for 5.5 hours; the ash was dissolved in 2M HCl solution 

173 and subsequently filtered through a P-free filter. The aliquots were then analyzed for P and Mg by 

174 inductively-coupled plasma atomic emission spectroscopy (ICP AES, IRIS interpid II XSP, Thermo scientific, 

175 USA; Ryan et al. 2001). Stoichiometric C:N, N:P and C:P ratios that were calculated are all mass ratios.

176

177 Stomatal traits. Leaf impressions were made from the abaxial side of five leaves per specimen halfway 

178 between the main vein and margin of the leaf, equidistant from the tip and base of the leaf blade. 

179 Transparent varnish was used to make the impressions, which were mounted with double-sided tape on 

180 a microscope slide after drying. Three photomicrographs of 1600x1200 pixels were taken per leaf print 

181 (dimensions = 344x258 µm; area view field = 0.09 mm²) using a digital stacking microscope (VH-5000 Ver 

182 1.5.1.1, KEYENCE CORPORATION, Osaka, Japan) with full coaxial lightning and default factory settings for 

183 shutter speed at ×1000 lens magnification (VH-Z250R). In order to determine the stomatal density of our 

184 dataset, we first trained a stomata detector model. Briefly, we started from the deep learning approach 

185 discussed in Meeus et al. (under review), which comprises a patch-based approach and starts from the 
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186 pre-trained convolutional layers of the VGG19 architecture (Simonyan and Zisserman 2014) by using the 

187 imagenet dataset (Deng et al. 2009). The output of the convolutional layers is then fed into a classifier 

188 network consisting of two dense layers, with 4096 and 2048 neurons, respectively and one output 

189 neuron. The weights of the classifier network were trained using the Adam learning rule (Kingma and Ba 

190 2015) with batch size 128. The training set consisted of 8,500 positive and 48,500 negative patches, 

191 which were sampled from the 18 species for which leaf prints and high-quality microphotographs were 

192 available. In order to avoid over-fitting, the weights of the dense layers were trained using dropout. 

193 Furthermore, data augmentation was used to enrich the training set by flipping and rotating the patches 

194 as well by varying the contrast, brightness, and sharpness. The model described in Meeus et al. (under 

195 review) was adjusted to increase accuracy of stomatal detection by optimizing the threshold for each of 

196 the species separately on a validation set consisting of three microphotographs per species. Threshold 

197 and information retrieval standard measures such as precision, recall and F-score to evaluate the 

198 model’s performance are shown in Table S2. Stomatal counts were converted to stomata per square 

199 millimeter. Guard cell length was manually measured in one stoma per picture on a subset of on average 

200 10 pictures per herbarium specimen using Fiji (Schindelin et al. 2012).

201

202 Variance sample set. To gain insight in how variance is structured within crown, individual, and species, 

203 we performed a decomposition of intra-specific variance for a subset of the studied species. For the leaf 

204 chemical and isotope composition, we looked at intra-species variability for two species: 

205 Gilbertiodendron dewevrei (four trees) and Mammea africana (two trees) sampled in 2012, in the same 

206 reserve as where the herbarium samples were taken. From each individual tree, triplicate leaf samples 

207 were collected at three canopy heights (low, middle, and upper) during six different sampling events.  

208 For this sample set, we used whole ground leaves, which were analyzed the same way as the time series 

209 sample set. For the stomatal traits, we used samples of four species: Prioria balsamifera (four 

210 individuals), Prioria oxyphylla (two individuals), Polyalthia suaveolens (three individuals), Trichilia 

211 gilgiana (three individuals). For each individual, 3 specimens were collected: one at the base of the 

212 crown, one in the middle, and one at the top. The latter samples were collected in the Luki reserve at a 

213 different location in the Democratic Republic of Congo, Eastern DRC, in 2016 (Figure 1). 

214

215 Data analyses. For the calculation of the iWUE we derived historic δ13C-CO2 (δ13Ca) values from the 

216 equation in Bonal et al. (2011), which are in turn based on earlier work by Keeling et al. (1989) and Friedli 

217 et al. (1986), correcting for the Suess effect. For historic atmospheric CO2 concentrations (Ca), we fitted a 

218 second-order polynomial regression to monitoring data from Mauna Loa and extrapolated back to 1935 

219 and 1953 (dataset available at ftp://aftp.cmdl.noaa.gov/). We used the classic model of C isotope A
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220 discrimination during photosynthesis to derive leaf Δ13C from these data and the cellulose δ13C, which 

221 were obtained via the bulk leaf δ13C measurements (Figure S2, Farquhar et al. 1982):

𝛥13𝐶𝑐𝑒𝑙𝑙 =
𝛿13𝐶𝑎 ― 𝛿13𝐶𝑐𝑒𝑙𝑙

1 + 𝛿13𝐶𝑐𝑒𝑙𝑙
(1)

222 Likewise, if we do not take into account respiration-related fractionation, we know that carbon isotope 

223 discrimination can be described by:

 𝛥13𝐶𝑐𝑒𝑙𝑙 = 𝑎 + (𝑏 ― 𝑎)
𝐶𝑖

𝐶𝑎
―

𝑓𝛤 ∗

𝐶𝑎
 (2)

224 where the first term is the fractionation during CO2 diffusion through the stomata (a=4.4‰; O’Leary, 

225 1981), the second term the fractionation associated with reactions by Rubisco and PEP carboxylase 

226 (b=27‰; Farquhar and Richards 1984), and the third term fractionation through photorespiration 

227 (f=12‰ with Γ* the CO2 compensation point in the absence of day respiration≈40 ppmv; Farquhar et al. 

228 1982, Keeling et al. 2017, Schubert and Jahren 2018, Lavergne et al. 2020). Hence, the CO2 concentration 

229 in the stomatal cavity (Ci) can therefore be calculated as follows:

𝐶𝑖 =
𝐶𝑎(𝛥13𝐶𝑐𝑒𝑙𝑙 ― 𝑎) + 𝑓𝛤 ∗

𝑏 ― 𝑎
(3)

230 Furthermore, we know that iWUE is related to the ratio of photosynthesis (A) to stomatal conductance 

231 (gs), and given by: 

𝑊𝑈𝐸 =
𝐴
𝑔𝑠

=
𝐶𝑎

1.6(1 ―
𝐶𝑖

𝐶𝑎
) (4)

232 For the trends of all chemical or stomatal traits over time, we fitted linear mixed effects models with 

233 species as a random effect and the sampling period as a categorical fixed effect. Models were then fitted 

234 using maximum likelihood methods in the ‘lme4’ package in R (Bates et al. 2007). P-values for fixed 

235 effects were determined based on the denominator degrees of freedom calculated with the 

236 Satterthwaite approximation, in the ‘lmerTest’ package (Kuznetsova et al. 2014). Given the distinctness 

237 of legumes in plant physiology (Adams et al. 2016), we repeated the analysis while adding a two-level 

238 factorial fixed effect to separate Fabaceae and non-Fabaceae trees as potential N fixers, allowing for the 

239 interaction between sampling data and this new grouping variable. 

240

241 For the decomposition of intraspecific variance in leaf chemistry and stomatal traits into inter-individual 

242 and intra-crown variance, we first fitted a random effects model with nested random effects, i.e. crown 

243 level nested in individual, and with species as a fixed effect. We subsequently extracted the variance that 

244 was estimated to be associated with the different nesting levels and considered it to be the ‘structural A
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245 variation’ with the respective level. Second, we re-fitted a mixed effect model for all response variables, 

246 but now with the crown position (upper canopy, middle, and lower canopy) as an additional fixed effect 

247 with species, instead of a random effect nested in individual. This was done to explicitly estimate the 

248 effects of sampling height in the canopy, on the different response parameters. For this decomposition 

249 of variance, we used the Bayesian multilevel model package ‘brms’ (Bürkner 2017), with weakly 

250 informed Gaussian prior distributions for all effects. After fitting, the estimates of variance were 

251 extracted via the posterior distributions of the random error terms, and additionally also via the 

252 posterior distributions of the factor levels for the fixed effects for the second model fits including crown 

253 position as a fixed effect. For all statistical analysis, R was used (R Development Core Team 2018). 

254

255 Sensitivity of δ18O to changes in gs. Earlier work has pointed out the limited sensitivity of δ18O in 

256 conditions of high relative humidity (Farquhar et al. 2007, Roden and Siegwolf 2012). To quantify the 

257 sensitivity of δ18O to changes in gs, we used a recent model from dendrochronology, developed by 

258 Barbour et al. (2004), and further improved by Lorrey et al. (2016). For ease of interactive use, we 

259 translated the model into a Microsoft Excel tool that simulates changes in leaf δ18O as function of 

260 stomatal conductivity shifts, relative humidity, temperature, photosynthetic active radiation, and source 

261 water and atmospheric water δ18O signature (Appendix 1, Figure S1). We parameterized this for our 

262 central African site, and assessed potential changes in leaf δ18O as a response to changes in gs, at 

263 different levels of relative humidity. For this, we assumed a constant temperature of 25°C, a wind speed 

264 of 3.1 m s-1, a photosynthetic active radiation of 1000 µmol m-2 s-1, and an effective path length of 0.1 m, 

265 which corresponds to recent on-site measurements. Additionally, we used this tool to assess how 

266 sensitive a stomatal conductance-induced change in leaf δ18O was to changes in temperature, leaf width, 

267 effective path length, photosynthetic active radiation, atmospheric pressure, wind speed and source 

268 water isotope composition, at high relative humidity (90%).

269

270 Results

271 Trends in leaf stable isotope signatures and nutrients. The sampled species set comprises species with 

272 leaf N values ranging from 1.30 to 4.29% and wood density values from 219 to 841 kg m-3, including both 

273 N fixers and non-N fixers. Overall, leaf δ13C decreased from –26.6‰ in 1938 to -31.9‰ in 2013 (Figure 

274 2a). This decrease implies an overall increase in Δ13Cleaf from 20.2‰ in 1938 to 23.9‰ in 2013 (Figure 

275 2b). Consequently, estimated iWUE decreased on average from 55.8 to 27.4 (Figure 2c). The leaf 

276 cellulose δ13C showed a strong positive correlation with bulk leaf δ13C (Figure S2; R2=0.75; P-value < 

277 0.001). Leaf P and Mg showed an increase from 1953 to 2013 (Figure 2e and 2f), while leaf N did not 

278 change significantly (Figure 2d). Likewise, the leaf δ18O signature did not change over time (Figure 2i). A
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279 The analysis, including the interaction between non- and potential N-fixers, revealed that iWUE 

280 significantly decreased in both non N-fixers and in N-fixers, but faster in non N-fixers (FIgure S3c). 

281

282 Trends in stomatal traits. Automatic detection of stomata gained accurate stomatal counts except for 

283 one species, Irvingia grandifolia with a F-score of only 0.58 (Table S2) which was therefore omitted from 

284 further stomatal analyses. Stomatal densities across species and time ranged from 22 mm-2 

285 (Strombosiopsis tetrandra) to 1089 mm-2 (Entandrophragma candollei) (Figure S5). Guard cell size ranged 

286 from 6 µm to 37 µm. The stomatal density decreased from an average of 368 to 245 stomata mm-2, while 

287 the average guard cell length did not change significantly over time. Additionally, the guard cell length 

288 (GCL) increased in N fixers contrary to non-N fixers (Figure S3h). The leaf stoichiometric responses were 

289 not different in potential N fixers versus non-fixers (Figure S4).

290

291
292  Figure 2. Trends of leaf carbon stable isotopic composition (a and b) and intrinsic water-use efficiency 

293 (iWUE, c); leaf nitrogen (N, d), leaf phosphorus (P, e) and leaf magnesium (Mg, f) which are nutrient 

294 proxies related to photosynthesis; and stomatal density (SD, g) and guard cell length (GCL, h) and the 

295 stable oxygen isotopic signature (i) over the last century in central African tropical forest. In all plots the 

296 left value is the baseline value for 1938, followed by the significance of change with the effect estimates 

297 for 1953, and the significance and effect size for 2013 with respect to 1953, with three levels of 

298 significance: P < 0.001 (***), P < 0.05 (**) and P < 0.1 (*). Different colors indicate the 23 different 

299 species that were included in the analyses, with the grey line the overall fixed effect of the fitted models.A
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300

301
302 Figure 3. Shifts in foliar C:N (a), N:P (b) and C:P (c) mass ratio stoichiometry since 1938 for central African 

303 trees. In all plots the left value is the baseline value for 1938, followed by the significance of change with 

304 the effect estimates for 1953, and the significance and effect size for 2013 with respect to 1953, with 

305 three levels of significance: P < 0.001 (***), P < 0.05 (**) and P < 0.1 (*). Different colors indicate the 23 

306 different species that were included in the analyses, with the grey line the overall fixed effect of the 

307 fitted models. 

308

309 Variance of isotopes, leaf chemistry and stomatal traits within the canopy. The structural variance 

310 associated with crown sampling height for leaf N, P, and N:P was higher within an individual than 

311 between individuals of the same species, but lower for all other measured variables (Figure 4). For leaf N 

312 and P, 16% and 35% of the intraspecific variation was associated with the sampling position in the crown, 

313 respectively, resulting in 29% for the leaf N:P stoichiometry. The isotope signatures were much less 

314 sensitive to crown sampling level for leaf δ13C and leaf δ18O with 17% and 16% of the variation, 

315 respectively. Stomatal density (SD) and leaf magnesium exhibited especially high inter-individual 

316 variability (45% and 32%, respectively) and intra-crown variance (25% and 13%, respectively). The 

317 additional model fits including crown-height as a fixed effect revealed that sun leaves exhibit higher leaf 

318 δ13C, leaf N, P, and Mg, and stomatal density values than shade leaves, while the inverse was noted for 

319 leaf C:N, N:P, and δ18O signatures. The largest relative effects were for leaf P (16% higher in upper 

320 canopy vs. middle canopy), and leaf N:P (-17%), with all other variables exhibiting effects < 10% (Figure 

321 4).

322
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323
324  

325 Figure 4. Intra-specific variability, decomposed into inter-individual and intra-crown variability of the 

326 measured stable isotope signatures, leaf nutrients and the stomatal density (SD) of the leaves based on 

327 two present-day sample sets from Yangambi and Luki, respectively, in the Democratic Republic of Congo. 

328 The bars indicate the relative variance associated with each of the levels; numbers above the plot give 

329 the specific effect of sampling in the upper or lower canopy (respectively highest and lowest line) versus 

330 the canopy values in the center of the canopy (middle line).

331

332 Sensitivity of δ18O to changes in stomatal conductance. The simulated leaf δ18O value as a function of gs 

333 clearly shows a decreasing δ18O response with increasing relative humidity, all other parameters kept 

334 constant. If we assume a doubling of the stomatal conductivity over time, the resulting shift in leaf δ18O 

335 value would be 0.6‰, if relative humidity is near 100% (Appendix 1 for additional scenarios, Figure S1). 

336 Additionally, we used the tool to assess the sensitivity of stomatal conductance-induced changes in leaf 

337 δ18O to any of the other parameters that are needed for the calculations. Our sensitivity analysis (at a 

338 relative humidity of 90%, and assuming that gs doubles), shows that increasing any of the parameter 

339 values with 50% does not change the leaf Δ18O (i.e. the signal we would have to capture with an IRMS 

340 after a doubling of the gs over time) with more than 0.3‰ (Appendix A1).

341

342 Discussion

343 Morphological and chemical leaf adaptation to increasing CO2, but decreasing iWUE. Our study site in 

344 central Africa exhibits a clear decreasing iWUE across the sampled species, and is thereby apparently 

345 paradoxical in its response to environmental change. Indeed, in the wake of CO2 fertilization, increasing 

346 iWUE has been widely reported from boreal and temperate forests (e.g. Keenan et al. 2013, Wang et al. 

347 2018). There are only few studies for tropical forests (Cernusak et al. 2013) and most studies show either A
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348 increasing iWUE (Hietz et al. 2005, Silva et al. 2009, Brienen et al. 2010, Nock et al. 2011, van der Sleen et 

349 al. 2014) or no significant change (Bonal et al. 2011). The question arises whether our observed decrease 

350 in iWUE is driven by decreasing A or increasing gs. To disentangle this, we looked at stomatal density and 

351 guard cell length, which directly signal maximal gs. The combination of a stable guard cell length, with a 

352 decreasing stomatal density, suggests an optimization for reduced water loss on the leaf level. Indeed, it 

353 seems that leaves in central African forests are down-regulating stomatal densities as a response to 

354 increased CO2 (Xu et al. 2016) or other factors such as increased vapor pressure deficit (Figure S7, Jiao et 

355 al. 2019) or decreased soil water availability (Bertolino et al. 2019). In addition to guard cell length and 

356 stomatal density, foliar or wood δ18O signature has been widely used as an indicator for gs and shifts 

357 therein. This δ13C and δ18O dual isotope approach was established to relate changes in iWUE to changes 

358 in either gs or photosynthesis (Scheidegger et al. 2000). As there is no detectable trend in leaf δ18O in our 

359 study, this would suggest that the actual gs did not vary over time, and that the iWUE response is mainly 

360 driven by reduced photosynthesis. However, recent work has cautioned against the use of δ18O as a 

361 proxy for gs in areas were relative humidity is high (Farquhar et al. 2007, Roden and Siegwolf 2012). 

362 Indeed, after simulating the δ18O with our tool (Appendix 1) and with the parameterization we used for 

363 our site in central Africa, δ18O appears to be insensitive to gs (Figure S2). As a result, the interpretation of 

364 these and other δ18O data as a proxy for gs from the tropics should be done with great care.

365

366 For photosynthesis, there is no direct proxy that integrates the photosynthetic activity of the leaves. 

367 Instead, we looked at foliar nutrients that have been widely related to photosynthetic capacity (Evans 

368 1989, Kattge et al. 2009, Walker et al. 2014, Tränkner et al. 2018). As such, the foliar N, P, and Mg show a 

369 slight increase over time. Along with the decreasing stomatal density, this increase in leaf nutrients 

370 seems to suggest a rather strong adaption of central African trees to environmental change: less 

371 potential water loss via a ca.  30% decrease in stomatal density and a apparent higher potential 

372 photosynthetic capacity via a 5-20% increase in leaf nutrients. 

373

374 The combination of a decreasing stomatal density and apparent upregulation in photosynthetic capacity 

375 would result in an expected increasing iWUE, but yet iWUE decreases over time. This paradoxical 

376 response challenges our current paradigms of tropical rainforest responses to environmental change, 

377 and points to additional variables acting on the forest other than only CO2 fertilization. Recent reports on 

378 the increase of boreal summer dry season length in the Congo basin (Jiang et al. 2019), in combination 

379 with a decline of the greenness of the Congo tropical forest in the last decade (Zhou et al. 2014), 

380 highlight a biome-specific change that might be linked to this unique response to a regional change. 

381 Indeed, long-term drying since the 1950s in central Africa (Dai 2013), along with longer dry seasons, 

382 higher temperatures, and increases in photosynthetic active radiation (Zhou et al. 2014) separates the 
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383 Congo basin forest from the Amazon forest, which is subjected to episodic short-term droughts (Phillips 

384 et al. 2009, Saatchi et al. 2013). Such long-term drying trend and increasing temperatures would surely 

385 impact the forest evapotranspiration via an increase in the vapor pressure deficit (VPD). Drought 

386 experiments have shown that plants maximize transpiration in that case, provided the available soil 

387 water levels are high enough. Although it is assumed that the sensitivity of photosynthesis to VPD is 

388 likely weaker than the sensitivity of gs to VPD, it is still substantial. As a result, the overall relationship 

389 between iWUE and VPD is likely hyperbolic and iWUE can decline as VPD continues to rise (Zhang et al. 

390 2019, Grossiord et al. 2020). More importantly, if this drying trend is accompanied by an air temperature 

391 increase, than this ensemble might shift local conditions to the extent that the temperature optimum for 

392 photosynthesis is exceeded, resulting in a depression of net photosynthesis (Lin et al. 2012, Aubry-Kientz 

393 et al. 2019, Huang et al. 2019). This holds especially for tropical forests, which already operate near a 

394 high temperature optimum, above which canopy photosynthesis may decrease with moderate air 

395 temperature warming (Huang et al. 2019). Indeed, it has been shown that the plasticity for thermal 

396 acclimation at the leaf level in tropical trees is limited, with potentially strong negative effects on leaf 

397 photosynthesis (Cheesman and Winter 2013, Dusenge and Way 2017, Slot and Winter 2017). We 

398 confirmed these climatic trends using the CRUNCEP data (Viovy 2018) for the grid cell of our study site, 

399 and looked at trends in temperature, VPD, relative humidity and precipitation, and additionally 

400 maximum temperature using the Berkeley data (Rohde et al. 2013). Although we have to keep in mind 

401 that these data are based on interpolation and re-analyses, our site seems to have experienced an 

402 increasing temperature, with maximum temperatures exceeding the 30°C since 1970 (Figure S7), which 

403 approximately corresponds to optimal temperature for photosynthesis in the tropics (Huang et al. 2019). 

404 Additionally, precipitation has slightly decreased and VPD increased over that same period. All together, 

405 these environmental changes could be responsible for a simultaneous increase in water deficit and water 

406 demand in this biome, combined with a reduction of net photosynthesis. The maximum temperature 

407 increase might push central African tropical forests over the physiological optimum temperature for 

408 photosynthesis, but with a high VPD and hence high transpiration. If this is at the basis of the decreasing 

409 iWUE trend, then this is likely of importance for other tropical forest biomes as well, as temperatures are 

410 projected to increase across the tropics. However, more experimental work is needed to test this 

411 observation in detail. Additionally, some authors have cautioned against the use of a linear, simplified 

412 relationship between δ13C and iWUE, because iWUE might be influenced by other factors such as 

413 mesophyll conductance (Seibt et al. 2008). Indeed, a systematic change over time in mesophyll 

414 conductance could underlie any δ13C trend and more research is needed to assess such effects. We 

415 acknowledge the importance of such biases but also note the clear practical limitation to assess 

416 mesophyll conductance in tree-ring or herbarium studies. Altogether, we can only conclude from our 

417 data that net photosynthesis in our study site cannot be upregulated proportionally to changes in water-
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418 use, which has resulted in higher concentrations of CO2 in the stomatal cavity and subsequently in a 

419 decreasing iWUE. 

420

421 Ruling out sampling bias. Our variance decomposition of the present-day sample set from Yangambi and 

422 Luki (Figure 4) showed that up to 35% of the variation in leaf N, leaf P, and leaf Mg can be attributed to 

423 the canopy level of sampling. Therefore, we have to consider that a sampling effect is potentially 

424 contributing to the observed leaf nutrient trends. Indeed, the variance decomposition indicated that 

425 higher, sunlit leaves, have structurally higher nutrient contents (Figure 4). However, the older herbarium 

426 specimens supposedly comprised sunlit leaves, while the 2013-collected samples were sampled with 

427 climbers, and were thus a mixture of sun and shade leaves. This means that the increasing nutrient 

428 content is potentially underestimated and the real increase in nutrient content might be larger than the 

429 trends detected in this study (Figure 2). For stomata, on the other hand, there seems to be a decrease in 

430 density from samples in the lower canopy (Figure 4) but not on the order of magnitude of the temporal 

431 decrease that was noted in the herbarium specimens (Figure 2.; -22 mm-2 versus -84 mm-2, respectively). 

432 Additionally, previous work has shown high variability in both whole-plant iWUE and the 

433 photosynthetic/stomatal responsiveness to increasing CO2 across tropical tree species (Cernusak et al. 

434 2007, Hasper et al. 2017). Nevertheless, the general trend across 23 common tree species that cover a 

435 wide range in the trait space is a decreasing iWUE. 

436

437 One additional challenge in using δ13C as a proxy for environmental information stored in plants is the 

438 influence of tree height on δ13C (Brienen et al. 2017). Although there is very little structural variance in 

439 δ13C associated with canopy level (Figure 4), we have used the variance dataset (2% relative positive 

440 effect of upper canopy sampling, 1% relative negative effect of sampling lower canopy) to test if an 

441 extreme sampling bias could have changed our trend in iWUE. If we hence assume that samples from 

442 1938 were overestimated by 2%, and samples in 2013 underestimated with 1% relative to their mean, 

443 then we still see a clear and significant decreasing iWUE (Figure S6). This implies that a decreasing iWUE 

444 trend at our site cannot be caused by a sampling bias at the canopy level.

445

446 No proof of progressive nutrient limitation To our knowledge, only one study has reported a decrease in 

447 iWUE, which took place in a subtropical P-limited forest (Huang et al. 2016). The latter study links the 

448 decreasing iWUE to the combination of P limitation, aggravated by high on-site N deposition. This 

449 aggravated P limitation was apparent from both the increasing leaf N:P ratio and decreasing leaf P. Like 

450 this site in subtropical China, our central African study site is also P-limited and subjected to high N 

451 deposition (Bauters et al. 2018, 2019). However, contrary to the site in south China, no shifts in N:P ratio 

452 could be detected, while the leaf P in the leaves seems to have been increasing. Indeed, shifts in Huang 
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453 et al. in N:P ratio, along with a decreasing P content shows trends that are very similar to aggravated P 

454 limitation that was noted along a primary succession (Izquierdo et al. 2013). In contrast, the lack of a 

455 shift in C:N or N:P ratios in our data seems to suggest that there is no progressive N or P limitation in 

456 central Africa. Additionally, the overall leaf P increases over time, despite the fact that lowland tropical 

457 trees are assumed to be P limited (Vitousek et al. 2010) since they grow on strongly weathered and P-

458 poor oxisols (Walker and Syers 1976). However, the way this species-level P limitation manifests as a 

459 community-wide response is still debated (Turner et al. 2018, Fleischer et al. 2019). In any case, we find 

460 no direct proof of N or P becoming increasingly limiting or increasingly constraining the C balance of the 

461 forest at our study site. This is contrary to what we would expect from theory and model simulations 

462 (Bonan 2008b, Wieder et al. 2015), and suggests that an increasing P limitation is either simply not 

463 reflected in the canopy stoichiometry, or is not yet occurring. In the latter case, external nutrient inputs 

464 could alleviate an increasing nutrient limitation. Biomass burning in the savanna borders on the African 

465 continent seems to give rise to an extraordinarily high N deposition on central African forests (Bauters et 

466 al. 2018), with seemingly no direct export that matches the N input (Bauters et al. 2019). Whether this 

467 also causes high organic P or airborne particle-bound P deposition on these forests, potentially 

468 alleviating an aggravated N or P limitation, is currently unknown. 

469

470 Implications for the Congo Basin’s C balance. The implication of the observed physiological leaf-level 

471 response, i.e. the overall interactive effect of CO2 fertilization and other environmental change factors on 

472 the whole-ecosystem C balance, is widely debated. Model simulations and empirical results from Free Air 

473 CO2 Enrichment (FACE) experiments suggest an increase in net primary productivity, constrained by 

474 nutrient bioavailability (Norby et al. 2005, 2010, 2017), while tree-ring research from the tropics suggests 

475 that a change in iWUE does not lead to a long-term increased biomass accrual or growth stimulation 

476 (Nock et al. 2011, van der Sleen et al. 2014). In temperate regions, an increasing iWUE coincided with 

477 decreasing growth induced by warming (Penuelas et al. 2008). Unfortunately, FACE experiments are 

478 currently lacking in the tropics, so direct evidence for the CO2 fertilization effect on tropical productivity 

479 is still missing (Norby and Zak 2011, Cernusak et al. 2013). Additionally, long-term adaptation of plant 

480 physiology or a delayed soil nutrient constraint might also lead to an overestimation of the CO2 

481 fertilization effects on net primary productivity from FACE experiments (Norby and Zak 2011, Peñuelas et 

482 al. 2011, Reich and Hobbie 2013). Indeed, ecosystem-level interpretations which are based on shifts in 

483 leaf-level iWUE alone are not trivial. At the very least, however, the decreasing iWUE raises questions on 

484 the implications for the Congo basin forest’s C balance at large scale. Further on-ground monitoring with 

485 repeated censuses and with more advanced ecosystem-level monitoring tools (e.g. eddy covariance 

486 towers) are needed to address this knowledge gap, given the importance of this biome for the global C 

487 cycle.
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488

489 Conclusion

490 Tropical forests are important in our global understanding of the changing C balance, but empirical 

491 evidence of responses to environmental changes is sparse. The Congo basin’s forest seems to show a 

492 unique response, exhibiting decreasing iWUE since 1938, with a downregulation of stomatal density and 

493 without a clear upregulation of photosynthetic capacity. Via an additional study on the variability of the 

494 measured variables in canopies, we can safely exclude that the iWUE trend shown in this study is not 

495 driven by sampling bias. This observed response challenges our current understanding of CO2 fertilization 

496 on tropical terrestrial ecosystems. For now, we can only conclude that environmental factors other than 

497 increasing CO2, e.g. increasing maximum temperature, likely overprints the expected iWUE response of 

498 central African trees. Still, more work is needed to mechanistically quantify these effects . The overall 

499 impact of this decreasing iWUE on the whole ecosystem C balance is unknown, but without doubt 

500 critical. Finally, we did not find proof of the progressive nutrient limitation hypothesis, exhibited by the 

501 lack of shifts in leaf nutrient stoichiometry since 1938 documented in this study.

502

503 Supplementary information

504 Figure S1. The response in leaf δ18O to changes in stomatal conductance, as a function of the relative 

505 humidity, as simulated by the excel tool in Appendix 1, based on the model  of Lorrey et al. (2016).

506 Figure S2. Bulk leaf δ13C vs leaf cellulose δ13C. 

507 Figure S3. The evolution of 1) leaf carbon stable isotope composition and intrinsic water-use efficiency 

508 (iWUE); 2) leaf nitrogen (N), leaf phosphorus (P) and leaf magnesium (Mg), as nutrient proxies related to 

509 photosynthesis, and 3) stomatal density (SD) and guard cell length (GCL) and the stable oxygen isotope 

510 signature over the last century in central African tropical forest, with separation of nitrogen fixers and 

511 non-fixers.

512 Figure S4. Shifts in C:N, N:P and C:P stoichiometry since 1938 for central African trees, with separation of 

513 nitrogen fixers and non-fixers.

514 Figure S5. Examples of stomata microscope images of herbarium specimens of nine tropical tree species

515 Figure S6. Trends in leaf carbon stable isotopic composition and intrinsic water-use efficiency with a 

516 correction for an hypothetical (and maximum) sampling bias

517 Figure S7. The trends in air temperature, precipitation, relative humidity, vapor pressure deficit and 

518 maximum temperature from 1935 to 2010 for our study location.

519 Table S1. Species and herbarium specimens that were included in the analyses for the different time 

520 periods.

521 Table S2. Species-specific thresholds and information retrieval standard measures (precision, recall and 

522 F-score) for a validation set of three microphotographs per species (N = 18).
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523 Table S3. General site characteristics

524

525 Appendix

526 A1. An excel-tool to simulate the δ18O signature in leaves as a response to changes in stomatal 

527 conductance, relative humidity, temperature, wind speed, source water δ18O and water vapor δ18O, 

528 based on earlier models by Barbour et al. (2004) and Lorrey et al. (2016). Explanation on how to use the 

529 tool is provided in the Excel file itself. It also includes an interactive sensitivity analysis.

530

531 Data Accessibility

532 Data supporting the results in this paper are available via the Supplementary Information or archived in 

533 the Ghent University institutional repository, and available upon request with the corresponding author.

534
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